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intro

uncalibrate problems hasve achieved great progress in recent decade:

• Given 2 iamges, compute matches between the images, and the 3D position
of the points that generate these matches and the cameras that generate
the images.

• Given three images, and no other information, similarly compute the
matches between images of points and lines, and the position in 3D of
these points and lines and the cameras.

• Compute the epipolar geometry of a stereo rig, and trifocal geometry of a
trinocularrig, without requiring a calibration object.

• Compute the internal calibration of a camera from a sequence of images
of natural scenes (i.e. calibration “on the fly”.

Why these achievement?

• the error that hsould be minimized in over-determined system

• robust estimation

Solved problem:

• Estimation of the multifocal tensors from image point correspondences,
particularly the fundamental matrix and trifocal tensors (the quadrifocal
tensor having not received so much attention).

• Extraction of the camera matrices from these tensors, and subsequent
projective reconstruction from two, three and four views.

More to learn:

• bundle adjustment to solve more general reconstruction problems.

• Metric (Euclidean) reconstruction given minimal assumptions on the cam-
era matrices.

• Automatic detection of correspondences in image sequences, and elimina-
tion of outliers and false matches using the multifocal tensor relationships.
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Chapter 0

Intro - a Tour of Multiple
View Geometry.

0.1 Projective geo

Projectvie Space: just expansion of Euclidean space. Euclidean space +
points at infinity –> projective space. Euclidean space is troublesome in one
major respect: keeps making exception, e.g. parrellel lines.

Coordinates: (homogeneous vectors) represnte points by equivalence class
of coordinate triples. (kx, ky, k), k ̸= 0!!!. Points at Infinity is repreensted as
(x, y, 0).

In Euclidean / projective geometry, all points are the same. It is just accident
that particular point are selected to be original / points at infinity have final
coordinate 0.

Transformation of Euclidean / projective space is represented by matrix
multiplication. However, in projective space, points at infinity are not preserved,
it could land on anywhere.

For practical reason, we sometimes treat line at infinity special / equal...

0.1.1 from Projective geo to euclidean space

Affine Geometry : map "line at infinity" to "line at infinity". The geometry
of the projective plane and a distinguished line is known as affine geometry and
any projective transformation that maps the distinguished line in one space to
the distinguished line of the other space is known as affine tranformation.

Euclidean Geometry: Specify line at infinity and two circular points. length
ratio / angle can be defined in temrs of ciruclar points
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6 CHAPTER 0. INTRO - A TOUR OF MULTIPLE VIEW GEOMETRY.

Absolute Conic: related to camera calibration.
in 2D, circular points: (1,±i, 0) lie on every circle (in regular Euclidean

coordinate). circle with homogeneous coordinate (x, y, w) is

(x− aw)2 + (y − bw)2 = r2w2

. 5 points define an ecllipes, 3 points + 2 circular points define a circle.
in 3D, all sphere intersect at a second-degree curve(conic) on the plane at

infinity, It is called absolute conic. Angle can defined in terms of the absolute
conic in ANY ARBITRARY coordinate system.

0.2 Camera Projections
. Mapping from P 3 to P 2. Generally,

x
y
w

 = P3×4


X
Y
Z
T


If all points lie on a plane, say choose this plane as z = 0, then the linear
mappign reduces to x

y
w

 = H3×3

XY
T


Cameras as points All points in a ray passing through the center of projec-
tion projects to the same point in an image. Thus, allpoints along such a ray is
equal. Thus, the set of all image points = the set of rays through the camera
center. Thus, the rays themselves are represented by homogeneous coordinates,
specifically, 2-d space of rays in P2.

camera center as essence. All that is important is the camera cnter, for
it alone deternmines the set of rays forming the image. Any two images taken
from the same point in space are projectively equivalent. (can be tranforemd
only by projective transformation without any infromation about 3D points.)

Calibrated cameras. For a camera not located on the plane at infinity, the
plane at infinity in the world maps one-to-one onto the iamge plane. it is because
any point in the image defines a ray in space that meets the plane at infinity
in a single point. Thusemmmmm????, the plane at infinity in the world does
not tell us anything new about hte image.

However, the absolute conic does. It projects to IAC (Image of the Absolute
Conic). location of IAC is known ≡ calibrated camera.

There is dual: The angle between two rays / lines in the world, is deter-
mined by where they meet the plane at inf, relative to the absolute conic. The
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projective relationship between the two image points and ω is exactly equal to
the relationship between the intersections of the back-projected rays with the
plane at infinity, and ω∞.

comment: Analogy in DDG, It’s like you define a metric g <,>, in the
real space (3D world) but you need to work on another manifold (image). can
we further do better?

If we wanna reconstruct the scene from single view, we normally determin
the line at infinity for some observed planes in the image. And upgrade the
affine reconstruction to Euclidean by assuming angles observed in the scene
(most particularly orthogonal lines / planes.)

0.3 Reconstruction from more than one view
comment: normally the usual input is a set of point correspondences!! but
how do we get the correspondence? how robust are they? how accurate / noisy
should the correspondence? in what scale??

Ambiguity. the ambiguity in the reconstruciotn is expressed by projective
transformations emmmmm????Because:

PjXi = (PjH
−1)(HXi)

. This projective ambiguity is unavoidable for 2-view camera. Up to that, the
scene can be reconstructed for ≤ 7 points which do not lie in critical configura-
tions.

correspondence: xi < − > x′
i

fundamental matrix & fundamental-matrix method. basic tool for
recon of points sets from 2-views!!!

x′T
i Fxi = 0, rank(F ) = 2, F ∈ 3× 3

.
comment: almost forget!!! Fundamental matrix is the basic algebraic en-

tity!!

0.4 Three-view Geometry
Trifocal tensor. 3×3×3 tensor, which relate the coordiates of corresponding
in 3 views. It is determined by 3 camera matrices, and determines them, up to
projective transformations.∑

ijk

xil
′

j l
′′

kT
jk
i = 0emmmmm????

The constraints: interanl constraints.
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correspondence:
x ↔ l′ ↔ l

′′

pros of 3-vew over 2 view 1) allow mixture of line and point correspon-
dences, instead of just point-point correspondence. 2) stability.

comment: if we have more views, say view from category, can we further
relax teh correspondence requirement??? how messy can it be?

0.5 Four view geometry and n-view reconstruc-
tion.

In general, quadrifocal is the most. the tensor method does not extend to more
than four views.

relax: affine camera. + a set of points are visiable for n views, then, the
factorization algorithm can be used.

relax: projective camera. but also requires all points to be visible in all
images.

relax: various assumptions.

dominant general method: bundle adjustment. relation to maximum
likelihood solution!!

0.6 Euclidean reconstruction
Till now, the camera are all un-calibrated. I fwe have complete calibration of
each of the camera, then some ambiguity can be removed.

the distortion / equality in projective space will arise with same probablity.
To human, it is not correct in Euclidean sense. Knowledge of the camera cali-
bration is equivalent to being able to determine the Euclidean structure of the
scene.



Chapter 1

Projective Geometry and
Transformation of 3D

Gemetric distortion arises when a plane is imaged by a perspective camera. The
imaging process can be modeled by projective geometry.

comment: 1. how to rectify planes? how to remove perspecitve distortion
from an image? what is perspecitve camera?

1.1 Planar Geometry

geometry algebra
point vector

line vector
conic section / conic symmetric matrix emmmmm????

1.2 2D projective plane

homogenieous representation of lines. ax+ by + c = 0 represents a line,
(a, b, c)T ≡ k(a, b, c)T , k ̸= 0. The set of equivalence classes of vectors in R3 +
(0, 0, 0)T gives us projective space P2.

homogenieous representation of points. a point x = (x, y)T lines on the
line (a, b, c) is the same as (x, y, 1) · (a, b, c)T = 0. Homogeneous vector repre-
sentative of a point

Both line and point in 2-space has 2-dof. Result point x lines on the line l
iff xT l = 0

9
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3-space P 2

rays point
plane line

two non-identcal rays lie on exactly one plane two points define a line
two non-identical planes intersect in one ray two lines interesect at a point

image plane at x3 = 1 homogeneous coordinate to represent point

Result intersection of two lines l, l
′

is the point x = l × l
′
. They are so

convinient thanks to homogeneous expression. proof:

l.(l × l
′
) = l

′
.(l × l

′
)

. Let x = l × l
′
, then l.x = l

′
.x = 0, x is at two lines.

Result a line joining two points x, x
′
is l = x× x

′

ideal points and the line at infinity. idea points / points at infinity: x3 =
0. The whole set iles on a single line, which is l∞ = (0, 0, 1). For any line
l = (a, b, c)T , its ideal point meets l∞ at (b,−a, 0)T , which is the direction of
lines. Thus, the line at infinity can be thought of as the set of directions of lines
in the plane.

relation to projective plane / imaging. Result Duality Principle: To
any theorem of 2-D projective geometry, there corresponds a dual therem, which
may be derived by interchanging the roles of points and lines.

Conics and dual conics. Conic: 2-degree equation curve. and can be
expressed homogeneously as symmetric matrix. Proof:
a conic in inhomogeneous coordinate is

ax2 + bxy + cy2 + dx+ ey + f = 0

. Now we homogenize it by x → x1/x3, y → x2/x3, rewrite it:

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0

xTCx = 0, C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f


It has 5-dof. and full rank if it is not degenerated case.

comment: The method of fitting a geometric entity (or relation) by deter-
mining a null space will be used frequently in the computation chapters through-
out this book

Result l tangent to C at point x is given by l = Cx Proof:
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Dual conics / conic envelopes. C∗ The ls that is the dual of xs forms a
conic C∗ = C−1(if full rank) in dual space. C∗ is the adjoint matrix of C.

Degenerate conics. C is not full rank. rank = 2 two lines, rank = 1
repeated line.

comment: from mathematic view: adjoint matrix of C and dual of C???

1.3 Projective transformations

Geometry is the study of properties invariant under groups of transformations
– Felix Klein.

(Geometry def): Projectivity / collineation / projective transfor-
mation / homography. a group of transformations. an invertible map-
ping h : P2 → P2 such that three points x1, x2, x3 lie on the same line iff
h(xi), i = 1, 2, 3 do. It preserves line!

(Algebraic def) Projectivity. h is Projectivity iff there exists a non-singular
3 × 3 matrix H, for any point in P2 represented by a vector x it is true that
h(x) = Hx. h can be represented by H.

There are two equivalent ways to define, 1) Any invertible linear transfor-
mations of homogeneous coordinates is projectivity. 2) Any projectivity arises
as such a linear transformations.

Projective transformation. planar projective transformation is a linear trans-
formation on homogeneous 3-vector(coordinates). It can be represented by a
non-sigular 3 × 3 matrix. x

′
= Hx. Scale of H does not matter, so H is

homogeneous matrix, with 8-dof.
After projective transformation, the projective properties remain invariance.

Perspectivity. If two coordinate system defined in two planes are both Eu-
clidean coordinate, then the mapping is called perspectivity, with 6− dof .

comment: Figure 2.5 in page 36. If the world lie in a planar, even locally,
or camera rotating, or shadow, there is perspective images, where lots of good
properties arise.

Fundamentally different ways to transform line / points / conics. if
x′ = Hx, l′ = H−T l. C ′ = H−TCH−1, C∗′

= HC∗HT . emmmmm????think
more!!

comment: Conic and dual conic undergos two different transformation!
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class expression invariants dof #point

Isometries
[
R t
0T 1

]
length, angle, area 3 2

Similarity
[
sR t
0T 1

]
ratio of length, angle, parallel 4 2

Affinity
[
A t
0T 1

]
ratio of length of ∥, ∥, area ratio 6 3

Projective
[
A t
vT v

]
cross ratio of 4 collinear points 8 4

1.4 A hierarchy of transformations / projective
linear group

Isometries. preserves Euclidean distance (iso=same, metric). Orientation-
preserving if upper left det(R) = 1. It form a group.

Metric Structure. structure is defined up to a similarity.

Essence of Affinity. 1) scaling in orthogonal direction. A = R(θ)R(−ϕ)DR(ϕ)
always decomposable! 2) affinity is the most general linear transformation that
fix l∞

Affinity is the middle ground for similarity and projective transfor-
mation. in affinity, det(A) fully define scaling anywehre on the plane, and
orientation. Also, ideal point remains ideal.

Decomposition of projective transformation. transformation higher in
the hierarchy than the previous one. HP (2dof) moves the line at infinity,
HA(2dof) affects the affine properties. HS(4dof) is similarity transformation.

H = HsimHAHP =

[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT v

]
=

[
A t
vT v

]
emmmmm????think! Where A = sRK + tvT . K is a normalized upper-tri
matrix detK = 1

comment: Well structured composition is easier to learn / compute??

1.5 The projective geometry of 1D

Cross Ratio.

cross(x1, x2, x3, x4) =
|x1x2||x3x4|
|x1x3||x2x4|

, |xixj | = det

[
xi1 xj1

xi2 xj2

]
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The definition of |xixj | is the signed distance from i to j, if xlast = 1. cross
ratio is valid for infinity points, invariant with choice of coordinate.

comment: Once you fix the camera position / points in the world lie in
one plane, the cross ratio of those points projected on the plane, is the same!!!,
irrelavant of where my imaging plane puts.

1.6 Topology of hte projective plane

P2 is equivalent of the set of all homogeneous 3-vector!! x = (x1, x2, x3) can
be normalized as x2

1 + x2
2 + x2

3 = 1. It lies in a sphere S2 in R3. But x,−x
is the same point. Thus, 2-1 correspondence from points in P2, S2. line
corresponds to great circle

emmmmm????In the language of topology, the sphere S2 is a 2-sheeted
covering space of P2. This implies that P2 is not simply-connected, which means
that there are loops in P2 which cannot be contracted to a point inside P2.
To be technical, the fundamental group of IP2 is the cyclic group of order 2.
emmmmm????

P 2 ≡ a disk with opposite points on its boundary identified. ≡ glued together.
P 2 is not orientatble.
comment: will topology constraints helps learn a canonical uv map?? com-

ment: the projection is camera dependent? can we map images from a cate-
gories to the same mapping??? comment: what does images from a category
really capture???

1.7 Recovery of affine and metric properties from
images

DoF We actually only want to restore to a similarity transformation. so, only
4 dof is needed. line at infifity (2dof) + 2 circular points (2dof). ≡ restore in
the decmoposition chain .

vanishing line. affine properties can be recovered from identifing imaged van-
ishing line.

Length ratio. affine properties can also be recovered by length / cross ratio.
To reconstruct similarity / metric.
Result circular points I, J are fixed points under H iff H is a similarity.

Proof:
easy to calculate.

I, J determines the orthogonal direction of Euclidean geometry. Some intu-
ition: (0, 1, 0)T , (1, 0, 0)T are packed into I = (1, 0, 0) + i(0, 1, 0).
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The conic dual to the circular points.

C∗
∞ = IJT + JIT ↔ ITC∗

∞I = 0, JTC∗
∞J = 0

. It is a degenerate rank2 conic.

Degenerate rank2 conic. passing two lines l,m, C = lmT + mlT . Re-
sult dual conic C∗

∞ of circular points I, J are fixed points under H iff H is a

similarity. Result junder euclidean coordinate, C∗
∞ =

1 0 0
0 1 0
0 0 0


1. C∗

∞ is generally a symmetric 3× 3 matrix, with 5-dof. But det(C∗
∞) = 0,

thus, it has 4-dof.

2. l∞ is in the null space of C∗
∞, C∗

∞l∞ = 0

Angles on the projective plane

cos θ =
l1m1 + l2m2√

(l21 + l22)(m
2
1 +m2

2)
=

lTC∗
∞m√

(lTC∗
∞l)(mTC∗

∞m)

The later one to express angle is invariant of projective transformation. bc,

lTC∗
∞m → lTH−1HC∗

∞HTH−Tm = lTC∗
∞m

Result Once the conic C∗
∞ is defined, 1) the Euclidean angles can be mea-

sured. 2) the ratio of length can also be measured. (by sinA, sinB).

Recovery of metric from image

C∗′

∞ = HC∗
∞HT = (HPHAHs)C

∗
∞HT =

[
KKT KKT v

vTKKT vTKKT v

]
So, if we can obeserve C∗′

∞, the H = U can be obtained by SVD.

C∗′

∞ = UΣUT ,Σ =

[
I 0
0T 0

]

How to observe C∗′

∞? It can either from two orthogonal lines / known
angle, or from length ratio.

Othogonal lines. two lines l,m, C∗′

∞ can be expressed as
[
KKT 0
0T 0

]
(be-

cause we have affinity, set v = 0 in the previous result. S = KKT to guarentee
symmetric.) Therefore, one pair of orthogonal lines forms one constraints:

(l′1m
′
1, l

′
1m

′
2 + l′2m

′
1, l

′
2m

′
2)(s11, s12, s22)

T = 0

emmmmm????this always has σ = 1, 1, 0??
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length ratio. The image conic (an ellipse) intersect with l∞ at circular points.

Orthogonal lines. (one step) Suppose we start from perspective image
(instead of affine transformation as above.) one pair of othogonal lines provides
one constraints on C∗

∞

(l1m1, (l1m2 + l2m1)/2, l2m2, (l1m3 + l3m1)/2, (l2m3 + l3m2)/2, l3m3)c = 0

c = (a, b, c, d, e, f)T

comment: but the two-step approach (termed stratified / stratification) also
apply in 3D???

1.8 More properties of conics
Polarity. for any x,C defines a line l = Cx. This line has a property: for
the two points x1, x2it intersects with the conic, their tangent will meet back at
x. x is the pole of l w.r.t C, l is the polar of x w.r.t. C.

A map: Correlation between pts and lines. Hence! the conic C induces
a map between points and lines of P2. And interestintly, the mapping is invariant
under projective transformation, since it is all based on incidence.

Conjugate points. if point y is on the line of l = Cx, then yTCx = 0. y, x
are conjugate w.r.t C.

Classification of conics under perspective. C is symmetric thus always
has real eigenvalue. under projective transformation, C ′ = U−TCU−1 = D =
diag(σ1d1, σ2d2, σ3d3), σi = ±1, 0, di > 0, D = diag(si)

T diag(σi)diag(si).
Thus, the type of conics can be enumerated by enumerating σi. See table 2.2
in page 60.

Classification of conics under affinity. l∞ is preserved, thus, has 3 classes,
by intersetcting line and conic: 1) ellipse (does not intersect) 2) hyperbola(tangent)
3) parabola(2 points)

1.9 Fixed points and lines
fixed popints corresponds to eigen vector. comment: does not need λ = 1
because e, λe is the same point. Fixed line are usually not mapped pointwise.

Euclidean matrix. two circular points I, J , which corresponds to eigen-
values {eiθ, e−iθ}. Third eigenvector is called pole, λ3 = 1. The Euclidean
transformation is equivalent of rotate θ around pole, without translation. com-
ment: KDC!
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Similarity. ideal fixed points: circular points. eigenvalue {1, seiθ, se−iθ}

Affine. two eigen vector: ideal points x3 = 0 (not circular points?). tird
eigen vector is finite in general.



Chapter 2

Projective Geometry and
Transformation of 3D

similar properties: l∞ in P 2, π∞ in P 3.
different properties: lines always intersects.

2.1 Points and projective transformation

dual , points - planes, lines- lines.

2.1.1 Planes

Incidence and relations. 1) points on the plane: πTX = 0, π = (n, d). 2)
note that two points defines a line is not trivial as in P2, l = x× y.

Three points define a plane.XT
1

XT
2

XT
3


3×4

π = 0

rank(3), then 1-dim null-space. To have similar expression as in P2, l = x× y ≡
[x, y]T · l = 0. we have det[X,X1, X2, X3] = 0, for any points on π.

detM = X1D234−X2D134+X3D124−X4D123 = 0, soπ = (D234,−D134, D124,−D123)
T

Three points defines a point. Direct apply dual.

Projective transformation. Under point transformation X ′ = HX, π′ =
H−Tπ

17
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Parametrized points on a plane. Points X on the plane π can be written
as X = M4×3x, x in any point in P2, M generate null-space of πT (πTM = 0.

2.1.2 Lines
DoF and awkward problem. lines have 4-dof. the natural coordinate are
5. homogeneous 5 vetor cannot easily be used in math expressions togetehr with
4-vectors representing points and planes.

emmmmm????comment: it is counter-intuitive. coz first defines a point,
and defines a direction. it’s 6-dof. what is misisng here???

Null-space and span representation. Two points A, B. the line can be

represnted as W =

[
AT

BT

]
. with the properties: (1) span of WT is the pencil of

points λA+µB on the line (2) span of 2d right null-space of W is the pencile of
planes with the line as axis. comment: use span to cancel the choice of points!
this is not in dual space. emmmmm????comment: are these represent the
same line???

Two plane P, Q. W ∗ =

[
PT

QT

]
(1) span of W ∗T is the pencil of planes with

the line as axis. (2) span of 2d right null-space of W ∗ is the pencil of points.
comment: use span to cancel the choice of points! this is not in dual space.

Result W ∗WT = 02×2.

Join and incidence. the join of a point X and a lineW is

null(M) = null

[
W
XT

]
the point defined by intersection of line W and plane π is

null(M) =

[
W ∗

πT

]
Plucker matrices. where line is represented by a 4 × 4 skew-symmetric
homogeneous matrix. line joining 2 points A,B is represented by L

L = ABT −BAT

comment: formally similar to cross product?
It has properties: 1) L in rank 2. 2-dimensional null-space is spanned by

the pencil of planes with the line as axis. LW ∗T = 0 2) L has 4dof. because
a) skew-symmetric matrix has 6dof. 1 in scale, 1 is constrained by det(L) = 0
3) is gerazalized of l = x × y 4) L is independent of choice of A, B. because
if C = A + µB, we can derive the same L 5) point transformation, matrix is
transformed as L′ = HLHT

L∗ = PQT −QPT , L∗′
= H−TLH−1
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Join and incidence.
π = L∗X,X = Lπ

Plucker line coordinates : six non-zero elements of L4×4.

L = {l12, l13, l14, l23, l42, l34}, detL = l12l34 + l13l42 + l14l23 = 0

every line in P 3 defiens a surface in P 5 – Klein quadric.
comment: It must satisfy the detL = 0 constraints. It is not homogeneous,

but a subspace
Result Two lines LL̂ are coplannar (and thus intersect) iff (L|L̂) = 0 (L|L̂)

is bilinear product!
some properties: 1) det[A,B, Â, B̂] = (L|L̂). it does not depends on the

choice of A,B, Â, B̂ 2) it can also defiend by dual plane det[P,Q, P̂ , Q̂] = (L|L̂)
3) L only represent a line in P 3 if (L|L) = 0 4) if L is defiend by P,Q, L̂ defind
by A,B. (L|L̂) = (PTA)(QTB)− (QTA)(PTB) emmmmm????

2.1.3 Quadircs and dual quadrics. (conic in P 3)

XTQX = 0

1. 9-dof

2. 9 points defines a quadratic. comment: why???

3. a quadirc defines as polarity between a point and a plane π = QX

4. quadric is transformed by Q′ = H−TQH−1

5. dual quadrics are equations on planes πTQ∗π = 0, Q∗ = adjointQorQ−1

comment: what is adjoint mean??

6. Dual quadric is transformed by Q∗′
= HQ∗HT

2.1.4 classification of quadrics

signature quadric is classified by diagnose matrix D where the element are
only 1, 0,−1. Number of +1− number of −1.

classification. the projective type of a queadric is uniquely determined by
rank and signature. Table 3.1 p74.

2.2 Twisted Cubics c

it is basically a parameterized curve!
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2-d projective plane as parameterized curve.x1

x2

x3

 = A

 1
θ
θ2


a twisted cubic is defined to be a curve in P 3. Similarily we have A in 4× 4 for
P 3

The standard form / canonical form is c(θ) = (1, θ, θ2, θ3)T

Application. 1) horopter for 2-view geometry. 2) defining the degenerate
set for camera resectioning.

2.3 Hierarchy of Tranformation
Hierachy Table 3.2. 7-dof for similarity – (3 rotation, 3 translation, 1 isotropic
scaling. ; 5 for affinity (3 × 3 − 3 − 1 = 5 emmmmm????other intuition? s);
– 3 projective part.

Screw deomposition a decomposition of a euclidean transformation.
comment: will be useful to discuss special motions.
Result Any particular translation and rotation is equivalent to a rotation

about a screw axis together with a translation along the screw axis. The screw
axis is parallel to the rotation axis. It can be determined from the fixed points
of the 4× 4 matrix representing the Euclidean transformation.

2.4 The plane at infinity
π∞/l∞ allow affine properties to be measured. Ω∞ / circular points allows
metric properties to be mesured.

By defining infinity plane, we have P3 that any two pairs of planes intersect
in a line.

comment: π∞ has 3 dof. why??? scale???
Result the plane at infinity is a fxied plane under H iff H is an affinity.

The plane is fixed as a set, not pointwise.

2.5 The absolute conic
X2

1 +X2
2 +X2

3 = 0, X4 = 0

Firstly, it means those points lie on the plane at infinity, X4 = 0; Secondly,
it means those points are in a conic

∑3
i X

2
i = 0 Ω∞ corresponds to a conic C

with C = I3×3. 5dof. The points are all imaginary points / no real points.
Result Absolute conic, Ω∞ is a fixed conic under the projective transforma-

tion H iff H is a similarity transformation.
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Orthogonality and polarity. d1, d2 are orthogonal if dT1 Ω∞d2 = 0. It is
the definition of conjugacy w.r.t Ω∞.

If image points are conjugate w.r.t IAC, then corresponding rays are orthog-
onal.

comment: The 3 × 3 matrix indictes that the conic lies in the plane at
infinity.

2.6 The absolute dual quadric
comment: it is actully more important than primal absolute quadric. Because
it can be expressed in one algebric form.

Euclidean / canonical coordinate. The envolope of all plane tangent to
Ω∞:

Q∗
∞ =

[
I3×3 0
0 0

]
emmmmm????comment: why Ω∞ can not be expressed as the same form???

Proof:
π = (n, d). πTQ∗

∞π = 0, thus, nTn = 0. On the other hand, n represents the
lines that π meets with π∞. from polarity w.r.t Ω∞, nT In = 0 iff it is tangent
to the conic.

Another Proof:
Consider all conic in form of Q = diag(1, 1, 1, k). when k → ∞, it only
contains points

∑3
i X

2
i = 0, X4 = 0 (expand to infinity). The dual of Q is

Q∗ = diag(1, 1, 1, k−1) → diag(1, 1, 1, 0).
Result Q∗

∞ is fixed iff H is similarity.
Result π∞ is the null-vector of Q∗

∞.
Result angle is given by cos θ =

πT
1 Q∗

∞π2√
()()

, which is invariant to H. com-

ment: this is a metric invariant to f(X)
emmmmm????comment: p84: should be π∞, Q∗

∞?
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Chapter 3

Estimation – 2D Projective
Transformation

3.1 DLT

Setting. 2D 2D point correspondence.

Key equation.
x′
i = Hxi, or, x

′
i × (Hxi)

comment: This is a common trick to convert inhomogeneous equation to
homogeneous.

Solution. Inhomogeneous solution (not recommended), vs homogeneous so-
lution

Solution from lines and other entities. l′ = H−T l. Count dof. Care be
taken for mixed type.

3.2 Different costt functions

Algebraic distance. [Bookstein-79] pros: linear, cheap to compute. Start-
ing point for non-linear min of a geometric / statistical cost function. Cons: no
geometrically / statistically meaningful. or not expected intuitively. – can be
solved by choice of normalization. comment: You might want to consider the
following when designing the loss function / supervision!!

Geometric distance. x: measured imaged coordinates, x̂: eistimated value
of points, x̄: true values of the points.

23
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Error in one image. assume in the first image, x̄ = x. True in calibration
pattern where points are measured to a very high accuracy. Transfer error:∑

i

d(x′
i, Hx̄i)

2

Symmetric transfer error. errors occur in both images. Forward, back-
ward transormation. ∑

i

d(x′
i, Hxi)

2 +
∑
i

d(H−1x′
i, xi)

2

Estimated homography is the one for the above is minimized.

Reprojection error. Estimating a "correction" for each correspondence.
Estimate both Ĥ and perfectly matched correspondence x̂i, x̂

′
i∑

i

d(xi, x̂i)
2 +

∑
i

d(x′
i, x̂

′
i).s.t. x̂′ = Ĥx̂

MLE of homography and correspondence.
emmmmm????is there sth deep??

Comparison of geometric and algebraic. Fitting VH on point X =
(x, y, x′, y′).

Conic analogue. fitting conic to 2D points. emmmmm????I’m lost...

Sampson error. A middle ground in between algebraic and geometric cost
function in terms of complexity. close approximation to geometric error. 1st
order method! The key is to consider constraints Ah = 0 as a cost depends
on X,CH(X) + CH(X̂) = 0. we wanna solve for ∥δX∥2 subject to Taylor
Expansion on X = δX + X̂.

Result Sampson Error is:

∥δX∥2 = ϵT (JJT )−1ϵ

, where J is ∇CX

emmmmm????need to run through it yourself.
To find H for all points,

D =
∑
i

ϵTi (JiJ
T
i )−1ϵi

Both ϵ, J depends on H.

Linear cost function. CH(X) = A(X)h is linear w.r.t X(??) is important.
1) the Taylor expansion is exact – Sampson error is geometric error. 2) Finding
H becomes a hyperplane fitting problem.
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Aonotehr geometric interpretation. all measurements is represented by
a single point in a measurement space RN .

1. measurement space RN

2. model: a subset S of points in RN . if X in the subset, it satisfiy the
modle.

Given the X, wanna find vector X̂ closes to X that satisfy the model

Error in both image. N = 4n, if x and H are selected, the model defines
x′. thus, the feasible subset S has 2n+8 dof. The geometric distance becomes:
given a set of measured point pairs, which corresponds to a point X in RN , and
an esitmated points X̂ ∈ RN lying on S,

min∥X − X̂∥2 =
∑
i

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)

2

Error in one image. model becomes x′
i = Hx̄i

3.3 Statistical cost functions and Maximum Like-
lihood estimation

Assume noise is Gaussian on each image coord without bias, with uniform stan-
dard deviation σ. comment: this might not hold true for imaging reason.

Error in one image. MLE of the homography Ĥ maximizes the log-likelihood,
which is equivalent as

∑
i d(x

′
i, Hx̄i)

2. In short, MLE is equivalent to minimizing
the geometric error function.

logP ({x′
i}|H) = − 1

2σ2

∑
i

d(x′
i, Hx̄i)

2 + constant.

Error in both images. MLE is identiacal with minimizing reprojection
error funciton.

∑
i d(xi, x̂i)

2 + d(x′
i, x̂

′
i)

2

Mahalanobis distance. now we assume covariance matrix Σ. Then max
log-likelihood is equivalent to minimizing the Mahalanobis distance

∥X − X̄∥2Σ = (X − X̄)TΣ−1(X − X̄)

3.4 Transformation invariance and normalization

Question: Invariance of the algorithm to different choices of coordinates.
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3.4.1 Invariance to image coordinate transormations

To what extent is the result of an algorithm that minimizes a cost funciton to
estimate a homography dependent on the choice of coordinate in the image?

coordinates x in one image are replaced by x̃ = Tx, and the in the other
image x̃′ = T ′x′. Then, H are transormed correspondingly: H̃ = T ′HT−1

The next question is, whetehr the outcome of the algorithm is independent
of the T, T ′.

3.4.2 Non-invariance of the DLT algorithm

Setup: a set of correspondence xi ↔ x′
i and H that is the reulst of the DLT.

Consider further a related set Txi ↔ T ′x′
i, let H̃ := T ′HT−1. Question: does

DLT apllied to the x̃i, x̃
′
i yield H̃?

Result T ′ be a similarity transformation with scale factor s, T is any ar-
betrary projective transformation. H is any homography and H̃ := T ′HT−1.
Then, ∥Ãh̃∥ = s∥Ah∥. In other word,

dalgebraic(x̃
′
i, H̃x̃i) = sdalg(x

′
i, Hxi)

Remark: emmmmm????(miss the argument p106).

1. No one-to-one correpondence between H and H̃.

2. ∥H∥ = 1 is not equivalent to ∥H̃∥ = 1

comment: only dependent on T ′. emmmmm????comment: go through the
proof yourself. hint: start from ϵ = x′ ×Hx

3.4.3 Invariance of geometric error

Minimizing gemetric error is invariant to similarity transformation.

d(x̃′, H̃x̃) = d(T ′x′, T ′HT−1Tx) = d(T ′x′, T ′Hx) = d(x′, Hx)

, hwere Euclidean distance is unchagned under Euclidean transformation T ′.

3.4.4 Nomralizing transformation

We have seen in the previous seciton, that there are some corrdinate systems
better than others fro computing a 2D homography. Some normalization hsould
be carried out before applying the DLT algorithm. Two pros: 1) result is more
accurate 2) it undo the arbitrary choice of scale and origin. The algebraic min
is carried out in a canonical frame.

comment: here the term canonical comes with reason for computational
accuracy.
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Isotropic scaling.

1. translate points to the origin.

2. scale points so that distance from the origin is equal to
√
2

3. apply those transformation to both image independently.

Why is normalization essential? (pre-conditioning) (must not consider
as optional) Think in detail of DLT. we essencially solve a SVD for A = UΣV T ,
to solve h, Ah = 0. A is 2n×9 but should have rank 8. However, it is impossible
due to noisy data. Thus we want to find h to minimize ∥Ah∥. It is equivalent
to find a rank 8 matrix Â that satisfy exactly ∥Âh∥ = 0 and closes to A in
Frobenious form. Â = U Σ̂V T . minÂ∥A − Â∥F = ∥UDV T − UD̂V T ∥F =

∥D − D̂∥F , s.t.rank(Â) = 8.
The element of A is just xx′, xy′, ww′.... The xx′ will be in the order of 104.

ww′ will be one. The min above is just increase / detrese the value such that
the sum of the change is minimum to reach rank 8 matrix. But changing small
amount of w (100) will have a huge effect in H but xx′ will not.

comment: It is insightful to switch between linear equation, SVD, null
space, rank, optimize matrix, find vector.

From the condition number aspect, the condition number of DLT is d1/dn−1.
The exatct arithmetic results is independent of normalization, but it will diverge
from the correct result in the presence of noise. large condintion number will
amplify the effect.

Non-isotropic scaling and variants. experiment suggests it does not lead
to significantly better results. Another variant is based on the observation that
some column of A are not affected by noise (w,w′, thus those column should
not be varied to find Â).

Scaling with points near infinity. It makes no sense to normalize the
coordinates of points in the infinite plane by setting the centroid at the origin,
since centroid may have very large coordinates. ?????

3.5 Iterative minimization methods

methods for minimize the various geometric cost functions. Cons:

1. slower

2. need initial estimation

3. might not converge, or to local minimum

4. stopping criterion.
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Overparameterization. Not neccessary: optimizer will ’notice’ that its is
not neccessary to move to redundant direciton. Not advisable: cost funciton
surface is more complicated when minimal parameteraization is used.

Restricted to particular class.

H = I + (µ− 1)
vaT

vTa

emmmmm????homography has 5 dof??

Function specification. The minimization is considered as fitting a surface
S specified by the model to the measurement space X ∈ RN . S is loccaly
parameterized. Each iteration is considered as varying the parameters to min
the distance.

goal:
∥X − f(P )∥2Σ

, where P is parameter in RM , f : RM → RN .
Error in one image (9): ∑

d(x′
i, Hx̄i)

2

f : h → (Hx1, Hx2, . . . ,Hxn)

Symmetric transfer error(9):∑
d(xi, H

−1x′
i)

2 + d(x′
i, Hxi)

2

f : h → (H−1x′
1, . . . ,H

−1x′
n, Hx1, . . . Hxn)

Reprojection error(2n + 9):

f : (h, x̂1, . . . x̂n) → (x̂1, x̂
′
1, . . . x̂n, x̂

′
n

Sampson error(9)
Gold Standard error emmmmm????same as geometric error?
comment: new things: sampson error, golde standard error

3.6 Experimental comparison of the algorithms

DLT is less robust to noise than Gold Standard algorithm. Always use normlized
DLT.
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3.7 Robust estimation
Till now only consider the error of measurement but ignore the error of mis-
match.

emmmmm????homography dof? & projective dof?
RANSAC: a model is instantiated from a minimal set and is scored by the

number of data points within a threshold distance. Alternative: median dis-
tance.

3.8 Automatic computation of a homography
input: just two images without correspondence. output: homography.

chicken and egg problem: correspondence & interest of point. Idea: first
obatin a set of putative correspondences. comment: now deep learning will
initialize with almost identity? and optimize, thanks to the large field of view.

3.9 Closure
ideas will reoccur throughout the rest of the book. 1) minimal number of cor-
respondences; 2) degenerate case that should be avoided. 3) algebraic and
geometric error with more than minimal number of correspondences. 4) pa-
rameterization that enforce internal constraints!
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Chapter 4

Algorithm Evaluation and
Error Analysis

How to test the performance of certain algorithm? ofetn not sufficient to only es-
timate variable or transformation, but measure of confidence or uncertainty
is also required.

There are two methods for computing this uncertainty(covariance). 1) based
on linear approximation and involves concatenating various Jacobian. 2) Monte
Carlo method

comment: why uncertainty is related to covariance?

4.1 Bounds on performance

This section test on synthetic data, and also sketch the methodology.

4.1.1 Error in one image

Residual error.

ϵres = (
1

2n

n∑
i=1

d(x′
i, x̂

′
i)

2)1/2

Note, it is not the true data x̄. The value of the residual error is not in itself
and absolute mearsure of the quality of the solution obtained. it depends on
the number of correspondences. e.g. if given 4 correspondences to compute H,
Ĥ of course will matches the observation exactly. BUT, it has variance σ2 to
the noise-free data.

4.1.2 Error in both images

ϵres = (
1

2n

n∑
i=1

d(x′
i, x̂

′
i)

2 + d(xi, x̂i)
2)1/2
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4.1.3 Optimal estimators(MLE)
Minimization of geometric error is equivalent to MLE.

comment: TO be continued... lost context...



Chapter 5

Part 1: Camera Geometry
and Single View Geometry

5.1 Outline
Chapter 6 is about projection of 3D scene onto 2D plane, that is encoded by a
matrix. P is a 3 × 4 matrix to map from homogeneous coordinates of a world
point in 3D o homogeneous coordinates of imaged point. The properties of the
camera (eg focal length, center) can be extracted from it. Two classes of camera
matrix: finite and afffine camera (parallel projection)

Chapter 7 is about

1. estimation of P .

2. Constraints can be incorporated into the estimation.

3. corection for radial lens distortion.

Chapter 8 covers

1. The action of camera on geometric objects other than finite point including
lines, conics, quadrics, points at infinity.

2. calibration: K is computed without computing P by imaged absolute
conic, or vanishing points and vanishing lines.

3. calibrating conic: simple geometric device for visualizing calibration.

33
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Chapter 6

Camera Models

def: camera is a mapping between 3D world and a 2D image. We focus on cen-
tral projection. The camera models are examined using the tools of projective
geometry. The geometric entities of the camera can be simply computed from
matrix representation.

Tow classes of camera: finite camera and affine camera (camera center at
infinity). This chapter is principally concerned with the projection of points.
Lines and other geometric entities are deferrred till chapter 8

6.1 Finite cameras

The basic pinhole model (with inhomogeneous coordinates). is il-
lustrated in the figure. Consider the plane Z = f – image plane / focal plane.
Under such a model, the point in space (X,Y, Z) is mapped to (fX/Z, fY/Z, f).
We get the mapping when ignoring the last coordinate in R (inhomogeneous):

(X,Y, Z) :→ (fX/Z, fY/Z)

Central projection using homogeneous coordinates.
X
Y
Z
1

 :→

fXfY
Z

 =

f 0
f 0

1 0



X
Y
Z
1



x = PX,P = diag(f, f, 1)[I|0]

comment: Now Make the projeciton model (matrix) more general:
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Figure 6.1: note the def of camera center / optical cneter, principal axis ray,
principal point

Principal point offset.

(X,Y, Z) :→ (fX/Z + px, fY/Z + py)

(X,Y, Z, 1) → (fX + Zpx, fY + Zpy, Z) =

f px 0
f py 0

1 0



X
Y
Z
1


x = K[I|0]xcam,K =

f px
f py

1


where Xcam is called camera coordinate frame in P3

rotation and translation. Now, the points in space is expressed in terms
of different Euclidean coordinate frame. Xcam and X represents the same point
in different frames.

Xcam =

[
R −RC
0 1

]
X
Y
Z
1


x = KR[I| − C]X = K[R|t]X,P = K[R|t], t = −RC

dof: 1(f) +2 (p) + 3(R) + 3 (t) = 9

CCD cameras: non-square pixels.

K =

αx x0

αy y0
1


dof: 9 + 1 = 10



6.2. THE PROCTIVE CAMERA 37

Figure 6.2: note the meaning of R, t

Finite projective camera. skew param, unusual cases.

K =

αx s x0

αy y0
1


dof: 10 + 1 = 11

Equivalence of finite projective camera and nonsigular projective ma-
trix.

P = M [I|M−1p4] = KR[I| − C]

where p4 is the last column of P . one decomposes M as product of M = KR,
where K is upper triangular , R is the rotation. The decomposition is essentially
RQ decomposition.

the set of camera matrices of finite projective cameras is identical with the
set of homogeneous 3 × 4 matrix for which the left hand 3 × 3 submatrix is
non-singular.

Most general projective cameras. if M can be singular, the mapping
would be a line or point, instead of a 2D image. comment: or affine camera??

6.2 The proctive camera

6.2.1 Camera anatomy

Notation: P = [M |p4]. M is non-singular if it is a finite camera. We’ll see how
we read the properties of cameras from the matrix P , M .
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Camera center. it is the null space. PC = 0. Proof:
consider the line containing C and any other point A, points on this line will be

X(λ) = λC + (1− λ)A

x = PX = λPC + (1− λ)PA = (1− λ)PA

Since they are up to scale, so all x are the same point on image plane, which
means , the line AC is a ray through camera center.

For finite and affine camera, we can also right the null space as :

C =

(
−M−1p4

1

)
, C =

(
d
0

)
,Md = 0

Column vectors. columns of vector p1, . . . p3 are vanishign points of the
world coordinates X,Y, Z. p4 is the imaged world origin. Proof:
(1, 0, 0, 0) are mapped to p1.

Row vectors. Some particualr planes.

The principal plane. The principal plane is defined as hte plane through
the camera center parallel to the image plane. or defined as the set of points X
which are imaged on the line at infinity of the image. P 3TX = 0. Proof:
It consists of the set of points X which are imaged at PX = (x, y, 0). P 3 is the
vector representing the principal plane of the camera.

Axis planes. Consider the properties of the set of points X on the plane
P 1, P 1TX = 0. then the plane will be imaged to PX = (0, y, w), which is the
image y-axis. Note that 1) the axis plane P 1, P 2 are dependent on the choice
of image coordinate system. P 3 is more tightly coupled to the natural camera
geometry. 2) the join of axis planes (camera center) algebraically coincide with
PC = 0.

The principal point and principal axis. The principal axis is the line
passing through the camera center (where Zcam points). The axis meets the
iamge plane at principal point. Proof:
1) What is the direction perpendicualr to the principal plane? d = (p31, p32, p33, 0),
which is P̂ 3 or m3. 2) what is the imaged direction? Pd. That is the principal
point.

x0 = Mm3

6.2.2 Action of a projective camera on points
Forward projection. The points of infinity (D = (dT , 0)T ) only depend on
the left 3× 3 (M). comment: use it in calibration.

x = PD = [M |p4]D = Md
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Back-projection of points to rays. Points P+x lies on the ray because it
projects to x. Thus, the ray is the line

X(λ) = P+x+ λC

If the camera is finite, then M is invertible. C̃ = −M−1p4, D = (M−1x, 0).

X(µ) = µ

(
M−1x

0

)
+

(
−M−1p4

1

)
=

(
M−1(µx− p4)

1

)
6.2.3 Depth of points
First consider the ‘normalized’ camera, i.e. |m3| = 1, det(M) > 0, plus, X =
(X,Y, Z, 1), then ,w is the depth to the camera center. (x = w(x, y, 1) = PX)

Proof:
x = w(x, y, 1) = PX, consider the 3rd dim.

w = P 3X = P 3(X − C) = m3(X̃ − C̃)

Note PC = 0. The right side can be interpreted as ‘dot product of the ray from
the camera center to the point X’, with the principal ray direction. if ∥m3∥ is
unit vector, then the dot product is the depth.

In general sense, here is the result: Result If X = (X,Y, Z, T ), P = [M |p4],
PX = w(x, y, 1)

depth(X;P ) =
sign(detM)w

T∥m3∥

6.2.4 Decompostiion of the camera matrix
The goal is to find camera center C, orientation (R) and internal parameters(K).

Center: Find null space by SVD.
R,K: QR decomposition.

6.2.5 Euclidean vs projective spaces
Note that the world and image are essentially Euclidean. We just borrow ideas
from projective geometry such that central projection can be expressed linearly.
Cameras are euclidean devices and simply because we have a projective model
of camera it does not mean we should eschew notion of Euclidean goemetry.

6.3 Camera at Infinity
When M is singular, it is not an finite camera. the camera center lies on the
plane at infinity. There are two classes: affine and non-affine camera

Definition Affine camera is one that has camera matrix P in which the
last row P 3T is of the form 0, 0, 0, 1. comment: it is not defined as the camera
center is at infinity. it is more specific than that since affine camera also requries
principal plane is at plane at infinity.
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6.3.1 affine cameras
Consider the cinematographic tracking back while zooming in techniques. (Ver-
tigo effect / dolly zoom)

Moving back effect: consider camera moving away in the direction of prin-
ciple axis m3/r3.

Pt = K

r1 −r1(C − tr3)
r2 −r2(C − tr3)
r3 −r3(C − tr3)

 = K

r1 −r1C
r2 −r2C
r3 dt


Zoom in effect: by fatctor k = dt/d0

K

dt/d0 dt/d0
1

r1 −r1C
r2 −r2C
r3 dt

 =
dt
d0

K

 r1 −r1C
r2 −r2C

r3d0/dt d0



P∞ = K

r1 −r1C
r2 −r2C
0 d0


Thus, P∞ becomes an instance of an affine camera by definition.
comment: Need derivation myself.



Chapter 7

Computation of the Camera
Matrix P

Given (Xi, xi) (or line correspondence) correspondences, we want to recover P
from by numerical methods. More specifically, if some constraints apply to the
matrix P , we will show how to use those constraints.

A important assumption is that central projection is linear , i.e. no lens
distortion. If there is one, we introduce the correction method at the end of the
chapter.

There are in general two ways to compute K. 1. decomposition from P
by QR. 2) computed directly without necessitatign estimating P . The second
method will be discussed in chapter 8.

7.1 Basic equations
DLT: It derives from xi = PXi up to scale, i.e. xT

i PXi = 0. If we write them
to linear equation w.r.t. P , we got 0 −wiX

T
i yiX

T
i

wiX
T
i 0 −xiX

T
i

−yiX
T
i xiX

T
i 0

P 1

P 2

P 3

 = 0

P iT is the i-th row of P, so it has 12 unknowns, every pair provides 2 con-
straints (the 3 equations are linear dependent.)

Let A denote the 2n× 12 matrix from correspondences:

A =

[
0 −wiX

T
i yiX

T
i

wiX
T
i 0 −xiX

T
i

]
i=1...n

∈ R2n×12

Minimal solution: 11/ 2 = 5.5
Overconstrained solution: when n > 5.5, we can solve a minimization

problem rather than an exact solution. For algebraic error, we wanna minimize

min ∥Ap∥, s.t. 1) ∥p∥ = 1 or 2) p231 + p232 + p233 = 1
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Degenerate config. Degenerate cases are more involved than in 2D homog-
raphy. Among those, there are 2 critical configs:

1. the camera and points lie on a twisted cubic.

2. The points all lie on the union of a plane and a single straight line con-
taining the camera centers. comment: Intuitively, you cannot decide the
projection behavior which is orthogonal to the plane. :p

Normalization. When the variance of depth is relatively slight, the centroid
of the pointed should be translated to the origin. And the coordinates are scaled
so that the RMS distance from the origin in

√
3 (comment: isometric or not

are discuessed before. ). However, if the variance of depth is significant, e.g.
one near camera, and one at plane at infinity, other methods should be applied.

If we normalized the x by Tx, and X by UX, with brief proof, we got
P = T−1P̃U .

Line correspondence. if we know that L is mapped to l. then we also can
build 2 constraints. Let us sample two points X0, X1 from L. we know that the
projected X should also be on the line l. In the formal words,

lTPXj = 0, j = 0, 1

7.2 Geometric error

Same argument as in homography section, we don’t actually wanna min the
algebraic error ∥Ap∥ = [wid(xi, Pxi)]

2, but d(xi, x̂i)
2 = d(xi, PXi)

2. This is
when we assume accurate measurement in the world space Xi. The situation
might arise from an accurately machined calibration object.

Note that, we can only solve the min by iterative techniques, where a para
of P is required. comment: such that we can walk on the surface of parameter
space by gradient descent. The initialization could come from DLT solution /
minimal solution.

comment: From example 7.1, I’m surprised that how good linear solution
can be. And it is much faster than iterative method.

Errors in the world points. If errors happen in both world, we are opti-
mizing

n∑
i=1

dMah(xi, P X̂i)
2 + dMah(Xi, X̂i)

2

dMah is the Mahalanobis distance w.r.t. known error covariance matrices.
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7.2.1 Geometric interpretation of algebraic error
What does DLT is actually optimizing, geometrically? Answer: Result it’s
optimizing

f
∑
d

(Xi, X
′
i)

, where X ′
i is mapped exactly to xi with the same depth of Xi. In contrast, X̂i

in the golder rules is the closest point that is mappeed to xi.
Note that for points Xi not far away from the principal ray, the X̂ is well

approximated by X ′. We also notcie two things to interpretate the optimization
goal:

1. d(X,X ′) is slightly larger than d(X, X̂). DLT slightly weights the points
farther away from the principal ray??? emmmmm????

2. DLT algorithm will be biased towards minimizing focal length at a cost
of slight increase in 3D geometric error, since there is an f in the goal.

A loose Proof:
, (in terms of we assume a buch of normlized point) DLT is minimizing∑

i

[ŵid(xi, x̂i)]
2, ŵi = ±∥p̂3∥depth(X;P )

If P is normalized such that ∥p̂3∥ = 1, from simple geometry in Fig 7.2, we
know that ŵ = C1depth(X;P ) = C2fd(X

′, X)2

7.2.2 Estimation of an affine camera
for affine camera, algebraic error and geometric error are equal. emmmmm????(–
proof?). So, geometric error can be minimized linearly.

The basic function becomes:[
0 −XT

i

XT
i 0

](
P 1

P 2

)
+

(
yi
−xi

)
= 0

7.3 Restricted camera estimation
The constraints could be

1. s = 0

2. αx = αy

3. x0, y0 is known.

4. K is known.

We will look into several problems with the example of s = 0, αx = αy. So,
dof = 11 - 1 - 1 = 9.
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Minimizing geometric error. Let the set of parameters to estimate is q,
then, we work on finding f : R9 → R2n that minimize the geometric errors, for
errors on one side. If errors on both sides, we find f : R9+3n → R2n+3n which
is pretty large..

Minimizing algebraic error Solving this is much smaller by reduced mea-
surement matrix. If we define g(q) = p that construct P by q, minimizing
algebraic error is equivalent to min ∥Ag(q)}| essentially, (comment: which
might not be linear, requiring iterative method. So we don’t want the dimension
too high

Reduced measurement matrix. If we look at A, it is a 2n × 12 matrix,
with very large number of rows. To ’reduce’ the computation, we could replace
A with Â ∈ R12×12 such that ∥Ap∥ = ∥Âp∥. e.g. Â = DV T . So q → Âg(q) is
just a mapping from R9 → R12

Result Given a set of n correspondence Xi, xi, the problem of finding a con-
strained camera matrix P that min algebraic reduces to minimization of function
R9 → R12, independent of n.

Initialization The naive way is to run DLT to get P first, and then clamp the
values to desired values which will initialize the variable in the SGD. However,
in practice this does not work so well. People instaed will add soft constraints
to the SGD, instead of clamping them during initialization.∑

d(xi, PXi)
2 + ws2,+w(αx − αy)

2.

And clamps the value at the end of the optimization.

Covariance estimation We can also estimate propagation of errors into an
image, by calculating the covariance matrix.

ϵres = σ(1− d/2n)1/2

d is the number of camera parameters.
comment: Similar to homography, I’ll put them brief for now...

7.4 Radial distortion

Now, in reality, central projection could be non-linear. It happens if the ray is
far aways from the principal axis, distorted by lens. We’ll model the nonlinear
effect by L, such that

(xd, yd) = L(r̃)(x̃, ỹ)

where x̃, ỹ are ideal pinhole cameras. r̃ =
√

x̃2 + ỹ2.
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choice of distrotion function L and center. We could approximate it by
Taylor expansion. let

L = 1 + κ1r + κ2r
2 + . . .

. Then κ1, κ2, . . . , xc, yc are considered as part of hte interior calibration of the
camera.

Note, the feature extraction should still be in the original image, not cor-
rected image, since artifact / aliasing will be introduced.
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Chapter 8

More single View Geometry

This chapter described imaged line / plane / conic / quadric, by developing
their forward and backward properties.

The camera matrix P is dissected further, with focus on 1) camera center
and 2) image plane (K). There are two key properties about them. 1) the
images with the same camera center are projectively equivalent. 2) images of
entities on the plane at infinity only depends on KR, not on C.

Then, we study the images of entities on π∞ because they are particularly
important comment: in terms of calibration?. The image of a X ∈ π∞ is a
vanising point, image of l ⊂ π∞ is vanising line. Their images both depends
on K,R. However, ω only depends on K,ω = (KKT )−1, thus is intimately
connected with camera calibration K. ω defines the angle between rays back
projected from image points.

8.1 Action of a projective camera on planes, lines,
and conics

8.1.1 On planes

Result Points on plane x = (X,Y, 1) ∈ π and their image x is a planar homog-
raphy. i.e. x = Hxπ Proof:
Consider we choose the XY plane as π in the world space. The points on the
plane X ∈ π is projeted:

x = PX = (p1, p2, p3, p4)


X
Y

Z = 0
1

 = (p1, p2, p4)

X
Y
1

 = Hxπ
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8.1.2 On lines

Forward projection. The line is parameterized by mu and two points A,B

x(µ) = PX(µ) = P (A+ µB) = a+ µb

Back projection to a plane. Algebraically, it back projects to plane PT l.
(simple proof.) Geometrically, all planes passing through camera center forms
a star of plane (2-parameter family). The three rows of P, P iT are a basis for
the star. The plane PT l is just a linear combination of this basis.

8.1.3 On conics

A conic C back project to a cone Qco, from simple calculation,

Qco = PTCP

Note that Qco is a degenerate quadric, thus a cone, with null vector C – vertex
of the cone.

8.2 Images of smooth surfaces

Definition Γ is the contour generator in 3-space, apparent countor γ is the
image of Γ Note that 1) for finite camera, Γ only depends on camera center,
not on image plane (or K). But γ depends on image plane. 2) for affine camera
with parallel projection, both Γ and γ only depend on the projection direction
k.

Next we describe the projection properties of quadrics, which is a general
case for contour generator and apparent contour.

8.3 Action of a projective camera on quadrics

Forward projection. Since it’s tangent, it relates to the dual quadric Q∗.
Result Under camera P , the outline of quadric Q is the conic C defined by C∗,

C∗ = PQ∗PT

Proof:
1) dual conic C∗ is illustrated by lines l, lTC∗l = 0. 2) l are back projected to
planes by π = PT l.

Result The plane of Γ for a quadric Q and camera with center C is given by
πΓ = QC. comment: Note that Γ of a quadric is a plane, but not in general.
Proof:
C is the polar, π is the pole.
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8.4 The importance of camera center

Images taken by two cameras with the same center are related by a planar
projective transformation. 1) They are projectively equivalent 2) cameras can
be considered as devices measuring projecitve properteis of the cone of rays.

Consider two camera with 1st as reference P = KR[I| −C], P ′ = K ′R′[I| −
C]. x′ = P ′X = (K ′R′)(KR)−1(KR)[I| − C]X = (K ′R′)(KR)−1x

For the next part, we assume world coordinate is the same as camera coor-
dinate, P = K[I|0]

8.4.1 Moving the image plane

Result the effect of zooming by a factor k is right multiplying K by diag(k, k, 1)
Proof:
from the previous part we have. x′ = K ′K−1x,H = K ′K−1 Suppose f is
increased to kf while remaining principal point the same as x̃0

K ′K−1 =

[
kI (1− k)x̃0

0 1

]

K ′ =

[
kI (1− k)x̃0

0 1

]
K = K

[
kI

1

]
.

We leverage the fact that K,K ′ are upper triangle matrix.

8.4.2 Camera rotation

easy to show that Result H = KRK−1. Even further, we can direclty read
R / θ from estimating homography H. The conjugate rotation H has several
good properties:

1. H has the same eigenvalues with R up to scale µ, µeiθ, µe−iθ.

2. The angle can be comptued from the phase of complex eigenvalues.

3. The direction of rotation axis / vanishign point is µ

It is one of infinite homography mapping. It plays key role for auto-calibration.

8.4.3 Applications and examples

Synthetic views and panoramic images.
comment: Note for synthetic views: by applying H, it is exactly the camera

sitting at C with a diff rotation matrix would have seen, regardless if X is on
the plane or not.
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8.4.4 Moving the camera center
Note that, if the camera center does not move, sit cannot tell us the 3-space
structure!! To measure the 3-space, we actually need the camera center to move
around.

8.5 Camera calibration and the image of the ab-
solute conic

Now we study what we’ll gain if K is known. In short, the projective device
becomes a metric measure device (Euclidean properties).

More conretely, we can measure the angle between two rays. (later we’ll show
this expands to more nice properties).

Result the camera calibration K is the transformation between x and the
ray’s diretion

d = K−1x

in the camera Euclidean coordinate frame.
Result

8.6 Vanishing points and vanishing lines

8.7 Affine 3D measurements and reconstruction

8.8 Determining camera calibration K from a sin-
gle view

8.9 Single view reconstrutcion

8.10 The calibrating conic
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Outline
Ther are three questions that will be addressed:

1. Correspondence geometry. Given an image x in the first view, how
does this constrain the position of x′ in the second view?

2. Camera geometry(motion). Given a set of corresponding points xi, x
′
i,

what are the P P ′?

3. Scene geometry(struction). Given xi, x
′
i P, P

′, what is X?

Chapter 9 describes the epipolar geometry and answer the first question.
Note that this epipolar geometry only depends on cameras, not depend on the
scene structure.

Chapter 10 describes one of the most important results in uncalibrated MV
geometry: a reconstruction of both cameras and scene structure can be com-
puted from iamge point correspondence. comment: Here we use reconstruction
as term for both camera and scene structure. not only refer to X.
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Chapter 9

Part 2: Epipolar Geometry
and the Fundamental Matrix

9.1 Epipolar geometry.

Epipole, epipolar line, baseline, etc.

9.2 F

The fundamantial matrix is the algebraic representation of epipolar geometry.
F defines a correlation / map from x to l′. This mapping is represented as F .

l′ = Fx

comment: x′TFx = 0 is just a famous property, which is commonly used for
forming constraints. It is not a definition / geometric meaning.

9.2.1 Geometric derivation.

Result

F = [e′]×Hπ

. Hπ is the transfer mapping from one iamge to another via any plane π

An arbitrary π defines a homography mapping each x to x′. where x′ is
not corresponding point, but a potential corresponding point. The epipolar
geometry defines that, l′ is the join of x′ and e′. Thus, l′ = e′ × x′ = [e′]×Hπ .

comment: π is arbitrary, thus Hπ is not arbitrary projective transforma-
tion. yet, it induce the same F ...
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9.2.2 Algebraic derivation.

1. you shoot a ray from C through x. The ray is

X(λ) = P+x+ λC

. 2. Select 2 special points on this ray: λ = 0, λ = ∞. Project them by P ′.
x′
1 = P ′P+x, x′

2 = P ′C = e′. 3. The join of x′
1, x

′
2 is l′ = x′

1×x′
2 = [e′]×P

′P+x.

F = [e′]×P
′P+

Specifically, if we assume world space sits at C, P, P ′ having special form
such that: P = K[I, 0], P ′ = K ′[R, t], then

F = [e′]×K
′RK−1 = K ′−TRKT [e]×

Here, the term K ′RK−1 occur again.

9.2.3 conrespondence condition

. x
′TFx = 0

properties of the fundamental matrix

e′F = 0, Fe = 0.

Proof: e′ is always on l′, for all x.
F is a orrelation. x defines a line l′. any point on l will map to the same l′.

9.2.4 The epipolar line homography

Epipolar lines forms a pencil of lines. it is a 1-d projective space. So a homog-
raphy can be derived for two pencil of lines. it has 3 dof.

thus the F, 7dof can be considered as : 2 (e) + 2 (e) + 3 (pencil of lines )

9.3 Fundamental matrices arising from special mo-
tions

Consider pure tranlation and planar motion.

9.3.1 Pure translation

F = [e′]×K
′RK−1 reduce to [e′]×, only 2 dof.

x′ = x+Kt/Z

if x = x, y, 1
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Figure 9.1: vanishing point is e because all correspondent points move in parallel
and intersect at v, which emmmmm????..

general motion. first rotate by R (represented by homography H), then
apply the pure tranlation. F = [e′]×H,H = K ′RK−1.

x′ = K ′RK−1x+Kt/Z

First term only depends on x, iamge position alone, not on depth. This part
accounts for H / R,K part. the second term depends on depth, but not on
image point, accounts for tranlation.
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Chapter 10

10
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Chapter 11
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